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G,(2) as the automorphism group of the octonionic 
root system of E, 

F Karsch and M Kocat 
Theory Division, CERN, 1211 Geneva 23, Switzerland 

Received 17 October 1989, in final form 9 February 1990 

Abstract. A simple method is suggested for the construction of the seven-dimensional 
representation of the adjoint Chevalley group G2(2), the automorphism group of the 
octonionic root system of E,. The maximal subgroups of G2(2) preserving the octonionic 
root systems of the maximal subgroups of E, are identified. Possible implications in physics 
are discussed. 

Dedicated to Feza Giirsey on the occasion of his 70th birthday. 

1. Introduction 

There is growing interest in the problem of deformations of conformal field theories 
[l]. Recently Zamolodchikov [2] has proved that the Ising model perturbed with a 
non-zero magnetic field remains integrable. He has also shown that the theory contains 
exactly eight massive particles and conjectured that the associated S-matrix describes 
the scaling limit of the Ising model at the critical point with non-zero m?gnetic field. 
It has since been shown [3] that this theory can be identified with the E8 Toda field 
theory [4]. The masses of the eight particles of the 2 8  Toda field theory turn out to 
be exactly those m y e s  calculated by Zamolodchikov [2]. A similar calculation has 
been done for the E, Toda field theory which describes the perturbed tricritical Ising 
model [ 5 ] .  

Recently one of us has shown that, within the context of the octonionic description 
of the E8 root system, the simple roots (indeed all roots) of E8 can be generated, by 
multiplication, from its three simple roots which can be associated with its SU(4) 
subgroup whose Coxeter-Dynkin (CD) diagram is the incidence diagram of the Ising 
model [ 6 , 7 ] .  This suggests that there may arise a close connection between the 
octonionic presentation of the E8 root system and the Ising model with non-zero 
magnetic field. If this conjecture can be justified, then octonions may play a prominent 
role in the formulation of the relevant field theories. 

In this paper we study the automorphism group of the octonionic root system of 
E, represented by purely imaginary octonions. This group is known as the adjoint 
Chevalley group G2(2) [8] of order 12 096, which is the automorphic extension of the 
finite simple group GL(2) of order 6048, also known as the derived Chevalley group 
[9]. Gi(2) U3(3) was first discovered by Dickson in 1901 [ 101. Here we give a 7 x 7 
matrix representation of G2(2) using a simple method. The paper is organized as follows. 

t Permanent address: Cukurova University, Department of Physics, Adana, Turkey. 
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In section 2 we give a brief description of the octonionic presentation of the root 
systems of E8 and E7 and define the automorphism of the E7 root system with the 
actions of the elements from the coset space E8/E7 x SU(2). This transformation is 
used to define the 7 x 7 matrices, acting on the imaginary unit octonions, which preserve 
the octonion algebra [7]. We show that the derived Chevalley group Gi(2) can be 
generated by three matrices associated with the simple roots describing the CD diagram 
of SU(4). In section 3 we study the extension of GS(2) to GJ2) by the cuter automorph- 
ism of Gk(2). In section 4 we identify the maximal subgroups of G2(2) which leave 
the octonionic root systems of the maximal subgroups of E7 invariant. We give explicit 
expressions of the matrices generating the maximal subgroups of G2.  Finally, in section 
5 we discuss our results and make remarks concerning the relations of G,(2) with the 
Hall-Janko group and the Weyl group of E8. 
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2. E, root system with pore imaginary integral octonions 

The E8 lattice can be described by integral octonions [ l l ] ,  the units of which form a 
closed non-associative algebra of order 240. There is a natural classification of the 
octonionic roots where *l, pure imaginary units, and the units with non-zero scalar 
parts, respectively, describe the roots of SU(2), E7 and the coset space E8/E7 x SU(2) 
provided they are multiplied by A: 

(2.1) 
SU(2) E7 E8/E7 s u ( 2 )  

*l * e , , f ( * e , * e , * e , * e , )  $(*I *e , ,  * e ,  * e,)  
where the indices take the values 

i = l , .  . . , 7  
jklm: 1246,1257,1345,1367,2356,2347,4567 
npq: 123,147,165,245,267,346,357. 

The result (2.1) can be obtained from the CD diagram of E8 (figure 1). The set of units 
of integral octonions of E8 in (2.1) is closed under the octonionic multiplication. 
Hereafter, when we say octonionic roots, we mean the 240 units of integral octonions. 

Let A,  B and R be arbitrary octonionic roots of E8 provided R belongs to the set 
of roots of the coset space E8/E7 x SU(2). It has been proved in [7] that the trans- 
formations 

A ’ =  RAE B ‘ =  RBR ( E :  octonionic conjugate of R )  (2.3) 
preserve the octonionic multiplication A B :  

A’B’= ( A B ) ’ =  R ( A B ) R .  

n 

(y” 

(2.4) 

n 

(y” 
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- 
- 0  0 0 0 0 - 2  0 

0 - 1 - 1  1 0  0 1 
0 1 - 1  1 0  0 - 1  

2 0 0 0 0 0 0  
0 0 0 0 - 2  0 0 

P='  2 0 -1 -1 -1 0 0 - 1  

- 0  -1 1 1 0 0 - 1 -  

0 2 0 0 0 0 0 -  
0 0 2 0 0 0 0  
2 0 0 0 0 0 0  

0 0 0 1 - 1 - 1  1 
0 0 0 - 1  1 - 1  1 

- 0  0 0 -1 -1 -1 -1 -  

R=' 2 0 0 0 -1 -1 1 1 

- 0  0 - 2  0 0 0 0-  
- 2 0 0 0 0 0 0  

0 2 0 0 0 0 0  

0 0 0 1 - 1  1 1  
0 0 0 -1 -1 -1 1 

Q = f  0 0 0 -1 -1 1 -1 

- 0  0 0 1 - 1 - 1 - 1  

. (2.7) 

They satisfy the relations 

p 3 =  Q 3 =  R 3 =  (PQR)'= I 

where I is the 7 x 7 unit matrix. It is straightforward to check that these matrices leave 
the root system of E, invariant. Note that the pair of roots in (2.6) (P, Q ) ,  (0, R )  and 
( P ,  R )  each generate a quaternionic root system of SO(8) which form the binary 
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tetrahedral group. Analogously, the 7 x 7 matrices in (2.7) associated with these roots 
pairwise generate a group of order 24 isomorphic to the binary tetrahedral group [ 71. 
It has been shown that, for a particular choice of a root from the coset space, the root 
system of Ea can be arranged in such a way that there exist nine different constructions 
of the binary tetrahedral groups out of the roots of Ea [7]. As we have 28 choices, the 
order of the group turns out to be 24 x 9 x 28 = 6048. This is in accord with the order 
of the derived Chevalley group Gk(2). A computer calculation justifies this fact that 
the group generated by the matrices of (2.7) is of order 6048. We have displayed the 
period-trace correlations of the elements of Gi(2) in table 1 and compared with the 
result obtained by Dickson [13]. They are in agreement. We refer the reader to [14] 
for further discussions on the group Gi(2) and the other finite automorphism groups 
of octonions. 

Table 1. Trace-period correlation of the elements of the derived Chevalley group G i ( 2 )  
(period of a matrix M is defined by M" = I ) .  

Trace n = l  n = 2  n = 3  n =4 n = 6  n = 7  n = 8  n = 1 2  

-2 56 
-1 63 378 1512 

0 1728 1008 
1 672 
2 504 
3 126 
7 1 

3. G,(2) as the automorphic extension of Gi(2) 

The derived Chevalley group Gk(2) involves three diagonal 7 x 7 matrices other than 
the unit matrix. They are simply given by 

M I = ( l ,  1, 1, -1, -1, -1, -1) 

M3 = (1, -1, -1, -1, 1, 1, -1) 

M * = ( l ,  -1, -1,1, -1, -1,1) 
(3.1) 

where the elements corresponding to the respective sets of indices 123, 147 and 156 
are positive. These matrices are in one-to-one correspondence with the occurrence of 
the Hurwitz integers [15] in (2.1) described by the three sets of quaternionic units 123, 
147 and 156. The matrices in (3.1) satisfy the relations 

Mi M*= M2Ml = M3 cyclic permutations of 1,2,3.  (3.2) 
One can readily check that there are four more diagonal matrices whose positive 
elements correspond to the set of indices 246, 257, 345 and 367. They also leave the 
octonion algebra and the octonionic root system of E, invariant. But none of these 
latter matrices is an element of Gi(2). 

Let M4 = (- 1, 1, - 1, 1, - 1, 1, - 1) denote the matrix with positive elements corre- 
sponding to the indices 246. The remaining diagonal matrices can be obtained as the 
products of M4 with M I ,  M2, and MI M2 = M3 just in the manner the octonionic units 
are obtained from the quaternionic imaginary units by multiplying them with an 
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independent imaginary unit of octonion. Let us define the remaining diagonal matrices 
by 

M7 = M4 Mi M6 = M4M2 MS = M4M3. (3.3) 

The seven diagonal matrices satisfy, under multiplication, the same algebraic structure 
of octonions except they are both associative and commutative. Their multiplicative 
structure can be written in a compact form 

MjM, = MjM, = Mk 

where i, j and k take the values of the sets of indices 123, 165, 147, 246, 257, 435 and 
367. The outer automorphism of Gi(2) can be obtained by the action of M4, M:= 1. 
Let h E Gi(2) denote an arbitrary element of G;(2). One can always find an element 
g E G;(2) such that 

M 4 h M i 1  = g.  (3.4) 

It is sufficient to show that (3.4) holds when h is a generator of Gi(2). Thus the 
automorphic extension of GX2) can be made with M4.  The products of the elements 
of Gi(2) with M4 from left or right define the new sets of elements of the extended 
group G2(2), of order 12 096, which admits Gi(2) as the normal subgroup. 

4. Maximal subgroups of G @ )  

In this section we study the subgroups of G2(2) preserving the octonionic root systems 
of the regular maximal subgroups of E,. The regular maximal subgroups of E7 are 
given by 

E7 2 E6 X u(1) E7 SU(8) 
(4.1) 

E, = SU(2) x SO( 12) E7 = SU(3) x SU(6). 

For non-regular subgroups see, e.g., [ 161. 

4.1. E6 x U(1) 

U( 1) being in the Cartan subalgebra of E7, it is represented by a zero root. Therefore 
the roots of E6 in E, are the root system of E6xU(1) .  Using figure 1 ,  we obtain the 
roots of E6 and the weights corresponding to its 27+27* representations as follows: 

E6 roots: 

* e l ,  *e2 ,  *e4,  *e6 t ( * e,  * e, * e4 * e6) 

f( *e,  * e2 - e5 + e,) 

;(*e, * e4- e3+ e5)  

f( * e ,  * e6 - e7 + 4 

;(*e, * e,+ eS - e,) 

f(*e,*e4+e3-e5) 

$(*e, * e6 + e7 - e3) 

$(*e4 * e6 - e5 + e7) 

$(*e2*e6-e3+e5) 

f( *e2  * e4 - e7 + e3)  

4(*e4*e6+eS-e7) 

+(*e, * e6 + e3 - e5) 

+(*e,* e,+ e7 - e3) .  

(4.2) 
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-1 0 0 0 0 0 0 -  
0 0 0 0 0 1 0  
0 0 0 0-1 0 0 
0 1 0 0 0 0 0 
0 0 0 0 0 0-1 
0 0 0 1 0 0 0  
0 0-1 0 0 0 0 

The weights of 27 + 27* 

* e 3 ,  & e s ,  *e7 

, (4.5) 

(4.3) 

f (  *e2 * e4 + e7 + e3)  ;(*e2* e4- e7 - e3) .  

To search for all the transformations leaving (4.2) and (4.3) invariant is rather lengthy. 
In principle, this could have been investigated with a computer calculation. We have, 
instead, used an intuitive method to find out a number of matrices which preserve the 
invariance of (4.2) and (4.3) separately. Using them we have generated all the rest. A 
simpler method can be described as follows. 

When we decompose the root system of E8 under E6xSU(3) (see figure 1) we 
observe that the SU(3) roots, the orthogonal vectors to those in (4.2), are given by 

C :  fl, *$(I + e3+ e5+ e , ) ,  *f( 1 - e3 - e, - e7). (4.4) 

Any transformation on the imaginary octonionic units leaving the set of SU(3) roots 
in (4.4) invariant also preserves the set of roots in (4.2). Tine imaginary units e 3 ,  e5 
and e7 constitute a non-associative triad. The transformation of these octonionic units 
determines the complete transformation matrix acting on seven imaginary units. We 
refer the reader to reference [7] for the details of the procedure. By selecting certain 
matrices from GS(2) preserving (4.4) we have generated the maximal number of 
elements of Gi(2) leaving the root systems in (4.2), (4.3) and (4.4) unchanged. We 
have checked that they form the group 3:+’:8, of order 216, which is one of the 
maximal subgroups of Gh(2) [9]. The transformation of the octonionic imaginary units 
by the matrix M4 also leaves the root systems (4.2), (4.3) and (4.4) invariant. Therefore 
the automorphic extension of the group 3y2: 8 can be made with M4. The extended 
group 3 y 2  : 8 : 2 of order 432, is one of the maximal subgroups of the adjoint Chevalley 
group G2(2). This is the maximal group which preserves the octonionic root system 
of E6. The group 3 y 2  : 8 : 2 can be generated by the matrices 

0 0 0 1 - 1  1 1 
0 0 0 1 1 1 - 1  
0 0 - 2  0 0 0 0 
1 - 1  0 1 0 - 1  0 
1 1 0  0-1 0-1 
1 - 1  0-1 0 1 0 

-1 -1 0 0 -1 0 -1 

They satisfy the relation 
T6 = s* = ( TS)’2 = 1. 

T =  

(4.6) 
We have calculated the periods and the traces of the 432 matrices which can be found 
in table 2. 
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Table 2. Trace-period correlation of the elements of the group of order 432 (automorphism 
group of the octonionic root system of E6). 

Trace n = l  n = 2  n = 3  n = 4  n = 6  n = 7  n = 8  n = 1 2  

-2 2 
-1 45 72 108 

0 108 
1 24 
2 18 
3 54 
7 1 

4.2. SU(8) 

The root system of E, splits under its maximal subgroup SU(8) as follows: 

125 = 55+70 (4.7) 

where 56 represents the non-zero roots of SU(8) and 70 stands for the weights of its 
70-dimensional representation. The roots of SU(8) are given by the set 

* e 2 ,  *e3,  * e , ,  * e 6 ,  *$( e ,  * e2 * e5 + e , ) ,  + ( e ,  * c2 c e; * e6) 

*$ (e ,  * e3 - eo+ e , ) ,  * + ( e l  * e3* e6-  e , ) ,  *+(*e2* e ,+  e4+ e , ) ,  *$(e4* e,* e 6 -  e , ) .  
(4.8) 

One can guess several transformations which preserve (4.8) and, at the same time, 
leave the octonion algebra invariant. The matrices which we have selected from Gi(2) 
generated a group of order 168 isomorphic to L2(7) [9]. This group corresponds to 
one of the other maximal subgroups of Gi(2).  There exist several other notations for 
L,(7) used in mathematical literature. One of the viable notations is PSL(2,7) [17]. 
The automorphic extension of L2(7) which is denoted by SL(2,7) can, in principle, 
be made with M4. However, as M4 does not leave the SU(8) root system in (4.8) 
invariant, the automorphic extension of L,(7) by M4 is not the maximal subgroup of 
G2(2) preserving the set in (4.8). The following matrix, which neither belongs to L,(7) 
nor to G5(2), leaves the root system of SU(8) unchanged: 

U =  

- 1 0 0 0 0 0 0  
0 1 0 0 0 0 0  
0 0 - 1  0 0 0 0 
0 0 0 0 0 0 - 1  
0 0 0 0 0 1 0  
0 0 0 0 1 0 0  
0 0 0 - 1  0 0 0 

u2 = I. (4.9) 

It can be checked that U constitutes the outer automorphism of L2(7). Therefore L,(7) 
can be automorphically extended by U where the extended group SL(2,7), of order 
336, is the maximal subgroup of G,(2), which also preserves the octonionic root system 
of SU(8). SE(2,7) is one of the modular groups. A general definition of this class of 
finite groups can be made as follows: SL(2,p) (p=pr ime)  is the special linear 
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homogeneous group of 2 x 2 matrices, of modulo p ,  of order p (  p 2  - 1). SL(2,7) has 
the subgroup of the binary octahedral group of index 7. The group preserving the 
octonionic root system of SU(8) is isomorphic to SL(2,7) and can be generated by 
the matrices 

V =  

1 0 0 0 0 0 0  
0 0 - 1  0 0 0 0 
0 1 0 0 0 0 0  
0 0 0 - 1  0 0 0 
0 0 0 0 0 1 0  
0 0 0 0 - 1  0 0 

L o  0 0 0 0 0 - 1  

- 0 - 1 - 1  0 1 1 0  
-1 -1 0 0 -1 0 -1 
-1 0 -1 0 0 -1 1 

0 - 1  1 0  1 - 1  0 
1 0 -1 0 0 -1 -1 

-1 1 0  0 1 0 - 1  
- 0  0 0 - 2  0 0 0 

. (4.10) 

They satisfy the relations 

v4 = x6 = ( vx)* = 1. (4.11) 

The period-trace correlations of the matrices of the group SL(2,7) are given in table 3. 

4.3. SU(2) xSO(12) 

From figure 1 we obtain the following roots: 

SU(2): *e5 

~ 0 ( 1 2 ) :  * e , ,  *e2,  *e3 , *e4 ,  *e69 * e 7 , t ( * e , * e 2 * e 4 * e 6 ) ,  (4.12) 

f ( * e ,  e3* e6* e , ) ,  +(*e2* e3 * el* e , ) .  

It is clear from an inspection of (4.12) that the matrices satisfying Rss = *l may leave 
this system invariant. If we select these matrices from the elements of GL(2) we observe 
that they indeed preserve the root systems in (4.12) separately invariant. Moreover, 
they generate the group 4 S,, of order 96, which is also one of the maximal subgroups 
of Gh(2). The matrix M,  preserves the root system of SU(2) x SO(12). Therefore the 
automorphic extension of the group 4 S, can be made by M4. Then the extended 
group 4 - S,: 2, of order 192, is one of the maximal subgroups of G2(2). It is obvious 
from these discussions that the set of matrices with R 5 , =  *l in G2(2) form the 

Table 3. Trace-period correlation of the elements of the group of order 336 (automorphism 
group of the octonionic root system of SU(8)). 

Trace n = l  n = 2  n = 3  n = 4  n = 6  n = 7  n = 8  n = 12 

-2 
-1 49 42 56 

0 48 
1 56 84 
2 
3 
7 1 
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automorphism group of the root system of SU(2) x SO( 12). One can check that the 
other sets of matrices with Rii = *1  ( i  = 1 ,  . . . , 7 )  in G2(2) also form a group of order 
192. However, there is one amusing distinction between the sets of matrices with 
R I ,  = *l and the others. The matrix elements of the set of matrices with R I ,  = *1 are 
either 0 or *l ,  in contrast to the other sets with Rii = *l  ( i  # 1 )  where the matrix 
elements of the matrices also include the numbers *i. The reason is clear. In the root 
system we have chosen in (2.1), e ,  plays a special role as it occurs repeatedly in the 
quaternionic units 123, 147 and 156. The group 4 - S4:  2 is generated by the matrices 

MI = 

1 0 0 0 0 0 0  
0 1 0 0 0 0 0  
0 0 1 0 0 0 0  
0 0 0 - 1  0 0 0 
0 0 0 0 - 1  0 0 
0 0 0 0 0 - 1  0 

- 0  0 0 0 0 0 - 1  

y=' 2 

0 1 1 - 1  0 0 1 
1 0 - 1  0 0 - 1  1 

-1  1 0  1 0 - 1  0 
1 0  1 0  0 - 1 - 1  
0 0 0 0 - 2  0 0 
0 - 1  1 1 0  0 1 

~ 1 1 0 1 0 1 0  

We have the relations 

M:= Y 6 = ( M 1 Y ) 8 = Z .  

The trace-period correlation of this group is displayed in table 4. 

. (4.13) 

(4.14) 

4.4. SU(3)xSU(6) 

In this case figure 1 leads to the following root systems: 

~ ( 3 ) :  * e , ,  * $ ( e ,  - e , -  e ,+  e , ) , * ; ( e ,  - e,+ e,+ e7)  

SU(6): * e 3 ,  * e 4 ,  * e 6 ,  * $ ( e ,  + e,* e4* e6),  *$(e l  * e3* e 6 -  e , ) ,  (4.15) 

* $ ( e 2 * e , * e 4 + e 7 ) .  

The subgroup of Gi(2) preserving this system is of order 18. The diagonal matrix M4 
does not preserve this root system. It can be checked that M6 leaves them invariant. 
The outer automorphism of the group of order 18 can be made by M 6 .  Then the 
maximal group preserving (4.15) is a subgroup of G2(2) of order 36. It can be generated 

Table 4. Trace-period correlation of the elements of the group of order 192 (automorphism 
group of the octonionic root system of SO(12) x SU(2)). 

Trace n = l  n = 2  n = 3  n = 4  n = 6  n = 7  n = 8  n = 12 

-2 
- 1  43 18 32 24 
0 
1 32 24 
L 

3 
7 1 

18 
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Table 5. Trace-period correlation of the elements of the group of order 36 (automorphism 
group of the octonionic root system of SU(6) x SU(3)). 

Trace n = l  n = 2  n = 3  n = 4  n = 6  n = l  n = 8  n = 12 

-2 2 
-1 1s 
0 
1 6 
2 
3 
7 1 

by the matrices 

' 0  1 1  1 0  0 - 1  
1 - 1  0 1 0 - 1  0 
1 0 - 1  0 0 1 - 1  
1 1 0 - 1  0 - 1  0 
0 0 0 0 2 0 0  
0 -1 1 -1 0 0 -1 

.-l 0 -1 0 0 -1 -1 

W = '  2 

- 0 - 1  1 0 - 1  1 0 
0 1 1 0 1 1 0  
0 0 0 2 0 0 0  
1 0 - 1  0 0 1 - 1  
1 - 1  0 0 1 0  1 

-1 0 - 1  0 0 1 1 
- 1  1 0  0 - 1  0 1 

(4.16) 

which satisfy the relations 

z*= W = ( Z W ) 6 = I .  (4.17) 

The trace-period correlation of this group is displayed in table 5. It seems that the 
groups we have generated in this case are not maximal in Gi(2) and correspondingly 
ir? G2(2) [9], a surprising fact which we have not understood. 

Before we conclude this section we would like to note the following interesting 
re!ations between the groups preserving the octonionic root systems and the Weyl 
groups of the relevant groups. The adjoint Chevalley group G2(2) is a subgroup of the 
Weyl group W(E,) with index 240, which is equal to the index of W(E,) in W(E,): 

(4.18) 

We have similar relations to (4.18) for the other groups 

-- IW(E6)I - I(W(SU(8))l- - IW(SO(12))l 
216 168 96 

5. Discussion and conclusion 

Employing a simple method, we have given the explicit seven-dimensional representa- 
tions of the groups G5(2), G2(2) and their maximal subgroups by identifying them as 
the automorphism groups of the octonionic root system of E, and its regular subgroups. 
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Our main aim was to generate the group G:(2) using the roots (2.6), the simple roots 
of the SU(4) subalgebra of Es, which lead to the matrices (2.7) satisfying the relation 
(2.8). One can check that (2.8) is not the proper generating relation for Gi(2) [9]. 
Similarly (4.6), (4.11), (4.14) and (4.17) do not represent the generating relations for 
the groups concerned. We should make it clear that the pure imaginary units of integral 
octonions (2.1), (4.2), (4.8), (4.12) and (4.15), representing respectively the roots of 
E7 and the root systems of its regular maximal subalgebras, are not closed under 
octonionic multiplication as the closure occurs only for the 240 units of integral 
octonions. The G(2) is the automorphism group of the 240 units of integral octonions 
leaving the scalar parts fixed, in other words it preserves the E8 lattice decomposition 
in (2.1): Es = SU(2) + E,+ Es/(SU(2) + E7). The full automorphism group of 240 unit 
octonions is 22 D,(2), which is of the same order of the Weyl group W(E,) but not 
the same group [9]. 

As stated in the introduction, the importance of the adjoint Chevalley group G2(2) 
and its normal subgroup G;(2) may turn out to be relevant if any sort of relations 
between the octocions and the statistical mechanical models associated with Es, E,, 
E6 and their maximal subgroups are obtained. Gi(2) is one of the maximal subgroups 
of the sporadic Hall-Janko group J2 of order 604 800 [ 181. Analogously, G2(2) is the 
maximal subgroup of the covering group of J2.  The Hall-Janko group J2 is characterized 
by three sets of icosians, also establishing its connection with the Leech lattice [19]. 
The relations between the icosians and the octonions have been recently obtained [20]. 
It is obvious from these discussions that the extension of the automorphism group of 
the octonionic root system of E, in various directions is possible. Perhaps the generaliz- 
atiocs of the statistical mechanical models associated with E8 and E7 to the models 
which can be associated with the Leech lattice can be made via this connection. The 
group G2(2) is nowhere discussed at length. We hope that the material discussed here 
may shed some light on the problems relevant to physics and mathematics. 
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